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Abstract

The typical structure of equations influences how we learn the
meaning of the equal sign. Previous studies have shown that as
students gain experience with addition problems, they actually
perform worse on certain problems, before eventually improv-
ing. We seek to explain this trajectory with gradual implicit
learning, without explicit representation of strategies or princi-
ples. Our parallel distributed processing model is nevertheless
able to simulate several phenomena observed in how children
learn mathematical equivalence: not only how successful per-
formance develops, but also what strategies are used and how
equations are encoded.
Keywords: Cognitive development; mathematical equiva-
lence; problem solving; neural network model.

Introduction
What kind of knowledge is required to solve mathematical
problems? Explicit knowledge of abstract principles, while
valuable, may be neither sufficient nor necessary for correct
performance. For example, students who know explicit rules
of precedence of algebraic operations may fail to apply them
(Kellman & Massey, 2013), and children often discover new
strategies without being able to justify them or even acknowl-
edge their use (Siegler & Araya, 2005). Here we explore how
behavior that appears in accordance with abstract principles
can emerge from gradual, implicit learning. Applying previ-
ous work that has ranged from acquisition of inflectional mor-
phology (Rumelhart & McClelland, 1989) to implicit knowl-
edge of a balance beam (McClelland, 1989), we offer a model
that learns to solve simple equations without using explicit
strategies or principles of equivalence.

The ubiquity of the equal sign indicates how fundamen-
tal equivalence is. This general concept underlies knowl-
edge in many areas, including non-mathematical tasks. Pi-
agetian conservation tasks (Piaget, Inhelder, & Szeminska,
1960) test whether a child recognizes the invariance of a
quantity (weight, length, number, etc) after some transfor-
mation. Likewise, we can transform an arithmetic expres-
sion like 5+1 into the number 6 or another expression (e.g.,
4 + 2), and the quantity being represented is the same. A
relational understanding of the equal sign captures the idea
that both sides of an equation represent the same quantity,
even if they appear in different forms. Before learning this,
children often first develop what has been called an oper-
ational understanding of the equal sign (Perry, Church, &
Goldin-Meadow, 1988). An expression like 3+ 4 = may
be treated as though it is a request for action, namely the ad-
dition of the numbers. This response may even be given in
cases where the equal sign is not the final operand: Students
may see 3+4+9 = 9+ and answer 25. A number of stud-
ies have focused on this class of equations called equivalence

problems (McNeil, 2007; McNeil & Alibali, 2004; McNeil,
Fyfe, Peterson, Dunwiddie, & Brletic-Shipley, 2011; Perry,
1991; Perry et al., 1988; Rittle-Johnson & Alibali, 1999;
Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011).

Students may have such strong expectations about equa-
tions that they incorrectly reconstruct an equation after view-
ing for five seconds (McNeil & Alibali, 2004). Reconstruc-
tion was worst when the prompt, a blank, was in the final
position and the equal sign was in a nontraditional location.
Students who solved such problems incorrectly by adding all
the numbers tended to make conceptual errors (such as mov-
ing the equal sign to become the final operator), but did not
make more errors on the numbers themselves.

It is essential for both cognitive scientists and educators to
understand better how children develop the ability to solve
equivalence problems. Students with a relational understand-
ing of the equal sign perform better on algebraic problems,
even after controlling for performance on standardized math
tests (Knuth, Stephens, McNeil, & Alibali, 2006). Differ-
ences in algebraic understanding, in turn, predict lifelong
outcomes in education and employment (National Research
Council, 1998). Efforts to reform mathematics education are
sometimes motivated by international comparisons, and stu-
dents in countries including the United States have particular
difficulty with nonroutine equivalence problems, compared to
students the same age in some other countries (Li, Capraro,
& Capraro, 2008).

In this paper, a simple neural network model will be used to
simulate the development of children’s ability to solve equiv-
alence problems. The model treats algebraic problem solv-
ing as an acquired skill, emerging slowly from practice solv-
ing example problems. Several studies including McNeil et
al. (2006) have found an overwhelming bias in the structure
of equations presented in textbooks, favoring the operational
notion of the equal sign, and we use a training set that is bi-
ased according to such empirical estimates. As a result, the
equations that have typical structure are learned first, and on
atypical problems with the blank at the end, the model adopts
an add-all strategy, ignoring the location of the equal sign.
The model fits the qualitative pattern observed in children’s
problem solving, and it also simulates the biased reconstruc-
tion of such equations seen in children who make the add-all
response. The model goes beyond previous informal verbal
theories and offers a mechanistic explanation of how biases
in mathematical textbooks influence cognitive development.

Modeling Approach
This paper explores the utility of parallel-distributed pro-
cessing (PDP) models for capturing the fascinating learn-
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ing trajectories and behavioral phenomena seen in the do-
main of mathematical cognition, where rule-based manipula-
tion of structured expressions is often assumed (Anderson &
Lebiere, 1998) but may not always be necessary. PDP models
have previously been used to explore interesting developmen-
tal trajectories in other domains, and also to capture percep-
tual reconstruction errors when inputs violate typical patterns.
McClelland (1989) presented a model of learning about the
role of weight and distance from a fulcrum in balance-scale
problems, which coincidentally tap into broadly similar no-
tions of equivalence and are often used as an instructional
metaphor for teaching mathematical equivalence. The model
demonstrated stage-like developmental progression seen in
children and previously characterized by rules, even though
the underlying learning from each new experience was grad-
ual and continuous.

Rogers, Rakison, and McClelland (2004) discussed how
parallel distributed processing principles could explain a
number of U-shaped developmental phenomena in language
and other domains. For instance, many but not all past-tense
verbs in English end in -ed, and a PDP model (Rumelhart
& McClelland, 1989) initially declines in performance due
to over-regularization, before learning correct morphologi-
cal patterns. In the domain of semantic knowledge, Rogers,
Lambon-Ralph, et al. (2004) used a recurrent network to sim-
ulate the typicalization of atypical features of items in a de-
layed picture-copying task. To model the similar task of
encoding and reconstructing mathematical equations (while
also filling in a missing number in any of three positions), we
likewise employed a fully recurrent neural network model.

Method

Table 1: Problem types, with their frequencies in parenthe-
ses. The frequencies were obtained by treating two empirical
estimates as independent: the bias for more equations with
operation(s) on the left than on the right (90.52%) and the
bias for more prompts that ask for the sum than for either
addend (60.65%).

Operation on left Operation on right
Prompt 1 +b = c (.178) = b+ c (.057)
Prompt 2 a+ = c (.178) a = + c (.019)
Prompt 3 a+b = (.549) a = b+ (.019)

Training Set
The training set consisted of 330 addition equivalence prob-
lems, presented in random order in each epoch. Each prob-
lem consisted of an expression containing a slot for each of
two addends and a slot for their sum; two of the three slots
were filled with a single-digit number, and the third slot was
left blank, serving as a prompt for completing a valid math-
ematical statement. The digits ranged from 0–9; because the
sum was constrained to a single digit, there were 55 different

problems containing 30 unique pairs of addends if their order
is ignored. Each problem was presented with the two addends
either on the left or the right side of the equal sign. Combin-
ing this with three positions for the prompt, there were six
syntactic types (shown in Table 1) of each of the 55 different
problems.

We conducted simulations in which the different syntactic
types of problems in the training set were sampled according
to biased, empirical frequencies, as well as a control simu-
lation run using equal frequencies for all problem types. As
students work towards algebra and more advanced mathemat-
ics, they may see Operation=Answer less often, but we chose
a stationary distribution to show that U-shaped learning need
not depend on changes in the distribution of training exam-
ples. We used frequencies1 found by Capraro et al. (2011)
in a second-grade US textbook (Charles, Crown, & Fennell,
2007). Of problems that had operations on one side of the
equal sign and a prompt for an answer on the other side,
they found that 90.52% had operations on the left and only
9.48% had operations on the right. Accordingly, we sampled
operation on left problems with a frequency of 90.52%. Of
the problems with all of the operations on the left2, 60.65%
involved a prompt to solve for the sum and 39.35% for an
addend. Based on this, we sampled sum prompt problems
with the relative frequency of 60.65%; the remaining cases
involved either the first or the second of the two addends with
equal frequency (19.68%). Table 1 shows the probability of
the model seeing each type of problem.

Representations
The network contained five visible pools of units: three for
the numbers and two for the operators. The operator pools
each contained two units: one for ‘+’ and one for ‘=’. We
considered several different ways of representing the num-
bers. One possible choice of representation was localist,
where each numerical value was represented by a one unit
out of ten in each pool. However, because localist patterns
are orthogonal, the network would not be able to generalize
its knowledge of addition across different numbers; further-
more, childen come to addition problems with prior knowl-
edge of numerical magnitude, so we sought a representation
that would represent similar magnitudes with similar patterns.
If we applied a Gaussian distribution of activation across
these localist units, we could create a linear similarity struc-
ture, allowing the network could infer that results from oper-
ations involving 4 should fall between those for 3 and 5, but
this introduced the need to specify a value for the spread of
the Gaussian. To avoid this, we opted for a ‘thermometer’
representation in which the number of units active in the pool

1Frequencies of equation structures have varied between coun-
tries (Capraro et al., 2011; Li et al., 2008), between decades
(Capraro, Capraro, Younes, Han, & Garner, 2012), and between
grade levels (McNeil et al., 2006; Rittle-Johnson et al., 2011; Pow-
ell, 2012).

2There were not enough problems with operations on the right
for reliable frequency estimation.
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corresponds to the value of the number (no units are active for
0, only the first for 1, the first and second for 2, etc.). Zorzi,
Stoianov, and Umiltá (2005) argue that such a representation
naturally maps to lower-level processes and enumeration pro-
cedures. To equate the amount of activation across different
numerical values, there was a second thermometer in each
pool, whose units reflected the value of the number by turn-
ing off rather than on.

Figure 1: The model architecture. There are five visible pools
(number, operator, number, operator, number), which act as
both input and output of the model. These visible pools have
bidirectional connections to a hidden layer, whose units also
have connections between themselves.

Architecture, Learning, and Aggregation Over
Replications
The architecture of this model is shown in Figure 1. The ovals
represent pools of units and the arrows represent weights con-
necting every unit in one pool to every unit in the other pool.
The strength of the net input to each unit (plus a fixed bias
of -2) determines its activation according to a nonlinear (sig-
moidal) function. The weights were initialized to small ran-
dom values. The model is fully recurrent, and so activation
propagated through the model gradually over seven time in-
tervals, divided into sub-intervals or ticks to approximate con-
tinuty (Plaut, McClelland, Seidenberg, & Patterson, 1996).
The units in all but the prompted slot were clamped to the
specified input values for three intervals, during which ac-
tivation propagates to other units. There were four inter-
vals of further processing; during the last two, the activa-
tions of units were compared to their correct values (corre-
sponding to the full equation with the prompted slot filled
in). All the weights were adjusted in order to reduce the dis-
crepancy between activation and target according to the (re-
current) back-propagation algorithm (Rumelhart, Hinton, &
Williams, 1989).

The simulation results reported below used a learning rate
of 0.0001. Initial learning with thermometer representations
was faster than with localist representations because similar-
ity allows transfer of knowledge; however, later phases of
learning were slower because it is more difficult to distinguish
representations that are partly overlapping than those that are
orthogonal.

All results below reflect the average behavior of 12 simula-
tions run with the same parameters, but we randomized initial
weights, biased training set, and order of training experiences.
Each run showed the same qualitative effects.

Results
Problem Solving as an Effect of Training Frequency
The control training set (fixed to sample each problem once
an epoch) led unsurprisingly to learning the six problem types
at an equal pace. We predicted that the biased training set
(randomly sampling each epoch according to empirical fre-
quencies) would show faster learning for the typical, opera-
tion on left problems, and slower learning for the atypical, op-
eration on right problems. The learning trajectories for each
problem type using the biased training set is shown in Fig-
ure 2. The model showed the predicted main effect of syn-
tactic order, but there was an interaction. Between epochs 60
and 120, the model becomes worse at a = b+ problems,
all while gaining practice and learning from feedback. This
key problem type had the lowest frequency (3.73%) relative
to its partner type with the same prompt position but the more
typical operation on left structure, because both the bias for
operation on left structure and the bias to prompt for the sum
favored its alternative.

Figure 2: The trajectory of error over the time course of train-
ing. Error is the mean sum of squared error for each pattern.
Time is measured in epochs, which each consist of 330 tri-
als. The performance is separated by problem type (shown in
Table 1).

Strategy Development
Having seen there was indeed a non-monotonic learning tra-
jectory, we now show that the model first learned an add-all
strategy and then gradually overcame this to produce cor-
rect responses consistent with the principle of equivalence,
as observed in the developmental data. In order to clas-
sify the model’s response, we calculated the cosine similar-
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Figure 3: The distribution of responses to a = b+ (where
b 6= 0) over the time course of training. Responses were coded
as correct or incorrect, and incorrect responses were coded as
’add-all’ if the response was within 1 of the sum, a+b. The
add-all response would be correct if the operation were on the
left (as is typical).

ity between the model’s output and the correct activation pat-
tern corresponding to each of the 10 digits. We then chose
the digit with the largest similarity as the model’s response
choice. In Figure 3, responses to our key “a = b+ ” prob-
lem are divided on the basis of whether they are correct, and
the incorrect responses are subdivided on the basis of whether
they are within 1 of the sum a + b (the same margin used
by McNeil (2007) to code children’s strategies). The sum
of a and b was the response generated from an add-all strat-
egy as a result of mistakenly transferring their learning from
“a + b = ”. Responses to such problems did not change
much over the first 60 or so epochs, but then there was a large
increase in add-all responses. The model actually performed
below chance (10%) on “a= b+ ” before overcoming this to
make progress toward the correct solution. This pattern has
been noticed in children as well (McNeil, 2007), where 7-
year-olds outperform 9-year-olds on final blank equivalence
problems.

Comparing the Model to Human Performance
We now consider whether our model can match the U-shaped
pattern of performance observed in empirical studies. McNeil
(2007) presented 12 atypical equivalence problems to two
groups of students (Study 1 and 2)3. Figure 4 compares
these empirical results4 to the performance of our model. We
simulated this task by randomly sampling 12 problems of
the key type a = b + and scoring whether any responses
were correct. We repeated this process 100 times for each

3The Study 2 students received brief lessons in order to match
performance of similarly-aged children in Study 1.

4These data appear in Figures 2 and 3 from McNeil (2007).

Figure 4: Model performance compared to human perfor-
mance over time. Study 1 and Study 2 data are from McNeil
(2007), with 95% Wilson confidence intervals shown.

run of the model at each epoch, and averaged the results.
In order to translate epochs of the model into years of a
child’s age, we shifted and scaled this variable such that
the sum of squared error between human and model data
points was minimized; the best fit was obtained by setting
Years = 7.252 + 0.0161 ∗ Epochs. Using these values, our
model explained 80.64% of the variance in the data from
these studies. More importantly, our model and the McNeil
(2007) studies showed very similar qualitative performance:
poor but somewhat random responses which often include
at least one that is correct, which first lead to consistently
wrong responses following an add-all strategy, and then rise
to a higher level with consistently correct responses.

Encoding and Reconstructing the Equation

Our model captures not only how students learn to solve
equivalence problems, but also how students encode, main-
tain and reconstruct representations of the equation. McNeil
and Alibali (2004) showed fourth graders (around ten years
old) equations with different structures, and asked them to
wait five seconds and then reconstruct the equation. Children
tended to rearrange (erroneously) the operators to conform
to their most frequent positions, and our model exhibited the
same behavior. Figure 5 shows the final activation of the unit
for an equal sign in the right (typical) position, at the end of
a total of seven intervals of procesing, including four after
the problem input was removed. This activation corresponds
to the degree of belief that an equal sign had been present
in the input in this position. The model saw operation on left
problems much more frequently, and its outputs quickly came
to conform to this bias; gradually, it overcame this bias as it
continued to learn, reflecting the actual input presented.

Interestingly, for operation on right problems with a
prompt in the final position, there was a perturbation in how

1015



Figure 5: Model reconstruction of equation structure over the
time course of training. The y-axis represents the mean final
activation of the unit which, when active, signifies an equal
sign in the right (typical) location. Each line corresponds to
a different problem type. Activation of the unit for the plus
sign (not shown) is approximately one minus the activation of
the unit for the equal sign.

the model encodes the operators. At this point in its develop-
ment, the model had a stronger tendency to misrepresent the
operator in a= b+ problems than in other types of problems
with operations on the right; the children tested by McNeil
and Alibali (2004) also exhibited this tendency. The pertur-
bation coincides with the increase in add-all responses after
epoch 60 and is due to the interactive nature of the model:
A similar network but with a non-interactive architecture did
not show the same behavior. Interactive forces in the model
go beyond mere frequency explanations and could offer a bet-
ter understanding of the underlying cognitive mechanisms.

Discussion
In summary, a recurrent neural network can serve as a useful
model of how we learn mathematical equivalence. First, we
found that a biased but stationary environment, which (like
textbooks) is strongly biased to equations with operations on
the left and weakly biased to problems prompting for the sum,
is enough to explain U-shaped development. We investigated
the strategies of the model, and found that it adopted an add-
all strategy like many children do before mastering equiva-
lence problems. Finally, we looked at the maintenance and
reconstruction of the operators (+ and =), pieces of the equa-
tion which were provided to the network at the beginning of
every trial. The model is strongly biased at first to see the
addition operator on the left and the equal sign on the right,
and with its interactive nature, the add-all strategy caused the
model to be even more likely to misperceive the equal sign
when the prompt occurred in the right-most position.

Because of its detailed dynamics, the model makes predic-

tions about the time course of processing that go beyond the
granularity of the data from exising studies. The amount of
time the model takes to reach some threshold and to com-
plete a problem could be compared to human reaction times
on equivalence problems. Eye-tracking studies may address
at what stage of attention, encoding, retention and retrieval
students mistakenly move the equal sign to its routine po-
sition. Some initial findings (J. Parvizi, personal communi-
cation, Nov. 18, 2013) from electrocorticographic record-
ings show that the neural activity that occurs while perceiving
numbers or plus/minus signs does not occur while perceiving
the equal sign in the context of a typical addition problem.

Our current model is limited to addition problems that al-
ways involved three single-digit numbers, and processes its
inputs in a single parallel settling process. A full account
should allow for indefinitely complex expressions on both
sides of the equal sign. It seems likely that a sequence of oper-
ations is often required to process such expressions, and this
is outside the scope of our current model. Neural networks
capable of processing inputs sequentially have been proposed
for language processing (e.g., Elman, 1990; McClelland, St.
John, & Taraban, 1989), and such models can exhibit biases
and U-shaped patterns similar to those in the current model.
The current model also does not have any gesture or speech
layers. Asking students to define the equal sign or explain
their performance (often using both speech and gesture) can
identify where they are in the transition from operational un-
derstanding to relational understanding (Perry et al., 1988).
How language and metacognition interact with problem solv-
ing remains an issue for further work.

The model presented in this paper applies PDP principles
used in other domains to the learning of procedures that re-
spect the principle of mathematical equivalence. Gradual im-
plicit learning is shown capable of simulating the strategies
underlying the U-shape in children’s understanding. The in-
teractive nature of syntax, semantics, and context explains
both the biased reconstruction of equations and the develop-
ment of correct performance. Based on our simulations, we
recommend educators consider including more equations of
varying structure in their curricula. Because the location of
both the equal sign and the prompt influenced results, we en-
courage researchers to attend to not only how a solved equa-
tion appears but also how a student interacts with it (in this
case, the prompt). This model offers potential improvements
to educational materials, and it advances our theoretical un-
derstanding of core issues in the field of mathematical cogni-
tion.
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