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Introduction 

In math education the goal is for children not only to 

master the materials and problems presented, but to 

understand underlying principles and properties that can be 

applied broadly to new problems and situations. Teachers in 

the classroom and policy-makers in Washington thus are both 

faced with what is essentially a cognitive question: What 

instructional regimes and practices will produce rapid 

learning, deep understanding, and broad transfer? 

This question has often been approached without 

connection to cognitive theories of learning, memory, and 

representation, but the gap has begun to narrow. On one hand, 

it is now known that domain-general learning mechanisms 

can acquire quite abstract and structured representations that 

go beyond the perceptual structure of the environment—a 

critical requirement for any theory of mathematical 

knowledge. Conversely studies in math cognition have 

revealed counter-intuitive behaviors that find ready 

explanations in cognitive models of learning in other 

domains. For instance, children, adults, and even math 

teachers reliably judge some three-sided figures to be better 

triangles than others, sometimes denying that irregular three-

sided figures are in fact triangles.1 Children transitioning 

from arithmetic to algebra often generate incorrect solutions 

to equations because they have learned to ignore the equal 

sign2. Such examples suggest that math learning can be 

subject to the same factors that govern learning other 

domains. Yet it remains unclear whether such effects are 

epiphenomenal, or whether they hint at important common 

principles underlying concept acquisition across multiple 

domains. 

Our symposium investigates this question by bringing 

together scientists whose research spans the gap between 

cognitive and educational science in the domain of 

mathematical knowledge. Martha Alibali, Chuck 

Kalish and Tim Rogers consider how cognitive memory 

models from non-mathematical domains can shed light on the 

patterns of transfer shown by children and adults in 

arithmetic.  Phil Kellman and Christine Massey will show 

that mathematical competency can improve when children 

learn to efficiently encode the perceptual structure of 

equations. Vladimir Sloutsky will consider 

interrelationships between learning of mathematical and 

object concepts in development. Jay McClelland and Kevin 

Mickey will discuss new research investigating the 

representational prerequisites that might underlie conceptual 

understanding of trigonometric functions. A short group 

question period will follow the four talks. 

Alibali, Kalish & Rogers: Connecting learning in 

mathematical and non-mathematical domains.  

Different learning tasks can elicit qualitatively different 

patterns of memory and generalization. In paired-associates, 

participants who learn to produce "dishtowel" to the probe 

"locomotive" can correctly generate the reverse pairing 

(producing "locomotive" given "dishtowel"), but, because 

pairs are arbitrary, cannot generalize to new probes (e.g. 

"caboose"). In categorization, participants remember features 

that aid in predicting the category label and use these to 

generalize, but fail to learn or exploit other item properties. 

In property induction, participants learn slowly but remember 

and generalize all manner of properties.3 In experiments with 

adults and children we show analogous phenomena in 

arithmetic learning. When the graphical elements of an 

equation are viewed as arbitrary symbols, participants learn 

individual problems without transfer, as in paired associates. 

When the quantitative "meaning" of the problem symbols is 

highlighted, participants acquire a transferable mapping from 

problem quantities to response quantities, similar to 

categorization. The extent of transfer in this setting depends, 

however, on the task: practice retrieving a missing sum 

transfers to new missing-sum problems, but not to related 

missing-addend problems. The broadest transfer occurs when 

participants practice with a mix of problem types, in a setting 

that emphasizes quantitative relationships among elements—

the same properties that produce broad transfer in object 

concepts. These results suggest a tighter coupling between 
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learning in mathematical and non-mathematical domains 

than has previously been appreciated. 

Kellman & Massey: Perceptual structure and 

adaptive learning in math education.  

While learning of complex structure is often attributed to 

higher-order processes, we argue that perceptual learning 

(PL)—experience-driven changes in the process and content 

of information extraction—plays a much greater role than has 

previously been appreciated. We consider PL as a crucial 

component of learning and expertise in mathematics and 

other complex cognitive domains. Whereas most formal 

instruction emphasizes declarative and procedural 

components of learning, learning to extract relevant structure 

in mathematical problems and representations provides the 

pattern recognition required for effective use of facts and 

procedures. We will briefly review research on PL 

interventions in the form of perceptual/adaptive learning 

modules (PALMs) that facilitate discovery of structure and 

recognition of patterns in mathematical domains, including 

preliminary results from a large efficacy study currently in 

progress. These efforts illustrate the promise of PL 

interventions, as shown on tests of mathematical competence. 

We also examine direct effects of PL interventions on 

psychophysical endpoints, such as efficient encoding of 

equations. Results indicate that even relatively brief PALM 

interventions aimed at improving students' seeing of structure 

and transformation in algebraic equations leads to reliable 

changes in basic information extraction. Encoding 

improvements were shown most strongly by participants who 

were initially less proficient at algebra. These changes, which 

were detectable 24 hours after training, provide direct 

evidence for durable changes in information encoding 

produced by a PALM targeting a complex mathematical skill. 

Sloutsky: What can we learn about mathematical 

cognition from object category learning? 

The primary difference between mathematical and object 

concepts lies in category structure: the former are rule-based 

and statistically sparse (i.e., few category-relevant and many 

irrelevant features) while the latter are statistically dense (i.e., 

many category-relevant features). Research in object 

category learning may then elucidate acquisition of math 

concepts. We review evidence that children distribute 

attention among multiple stimulus dimensions, making it 

difficult to learn statistically sparse concepts like those 

central to mathematics. Consequently children and adults 

may extract different structures from the same learning 

experiences. Participants learned a category possessing both 

(a) a single deterministic rule-like feature and (b) multiple 

inter-correlated probabilistic features. Whereas 4-5-year-olds 

used multiple probabilistic features to generalize and were 

more likely to remember these, adults used the deterministic 

feature to generalize and were less likely to remember other 

features. When the deterministic feature was made salient, 

children were more likely to use it in generalization, but they 

continued to use and remember all features. Thus, though 

their response strategy changed, their representation did not. 

From these findings we argue that perceptually-rich problem 

instantiations may hinder generalization in math because, like 

stimuli in our research, they possess one relevant 

deterministic feature among many irrelevant features. If 

children naturally acquire dense probabilistic category 

structures, they may fail to generalize practice problems with 

sparse structure. We then demonstrate such an impaired 

transfer in learning of mathematical concepts in young 

children. 

McClelland & Mickey: Building a core 

conceptual structure for trigonometry. 

How can we help students gain a grasp of the basic ideas 

underlying trigonometric functions? Our approach links to 

the ideas of Robbie Case, who understood the mental number 

line as a core conceptual structure for two-digit addition and 

subtraction upon which one could build an understanding of 

decimal numbers and fractions.4 We extend this approach to 

the 2D coordinate plane, taking the 'unit circle' as a core 

structure for grounding the extended definitions of the 

trigonometric functions outside the range of right triangles. 

In empirical studies with Stanford undergraduates, we have 

found that (a) students who report using the unit circle do 

better on an assessment of their understanding of 

trigonometric identities than those who report using rules or 

other visualizations; (b) a brief presentation of the core unit 

circle ideas produces better generalization to identities not 

explicitly covered in the presentation, relative to a rule-based 

presentation; but (c) only those performing above chance on 

a pre-test showed the benefit from the presentation. A second 

study assessed the unit-circle intervention on a group of high-

school seniors, none of whom benefitted.  This has led us to 

construct a structured series of didactic presentations and 

interleaved activities designed to ensure students have a well-

grounded understanding of all of the elements on which the 

unit circle definitions build. We will report the results of new 

studies with this interleaved intervention, and will consider 

the implications of our studies for both education and for 

understanding the cognitive underpinnings of math 

knowledge. 
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